
Chapter Five
Second Order Linear Equations

1. Introduction
In this chapter we are going to consider single equations of order two and higher. Since

almost all differential equations that occur in applications are of order one or two, most of
the emphasis will be on equations of order two. Moreover, we will consider only linear
equations.

The most general linear ordinary differential equation of order two has the form,

a�t�y" �t� � b�t�y ��t� � c�t�y�t� � f�t�. �1. 1�

We call this a linear equation because the unknown function y�t� and its derivatives appear
in the equation in a linear way. That is, there are no products of y and its derivatives, no
powers higher than one, no nonlinear functions with y or its derivatives as an argument. But
there is a more satisfactory way to define what we mean by a linear equation. First, define a
”function” into which we substitute functions of t rather than numbers,

L��� � a�t� d2

dt2 ��� � b�t� d
dt

��� � c�t����. �1. 2�

i.e.,

L�y1�t�� � a�t� d2

dt2 �y1�t�� � b�t� d
dt

�y1�t�� � c�t��y1�t��,

L�y2�t�� � a�t� d2

dt2 �y2�t�� � b�t� d
dt

�y2�t�� � c�t��y2�t��.

We refer to L��� as an operator. Then it is easy to see that

L�y1�t� � y2�t�� � a�t� d2

dt2 �y1 � y2 � � b�t� d
dt

�y1 � y2 � � c�t��y1 � y2 �

� a�t� d2

dt2 �y1 � � a�t� d2

dt2 �y2 � � b�t� d
dt

�y1 � � b�t� d
dt

�y2 � � c�t��y1 � � c�t��y2 �

� L�y1�t�� � L�y2�t��.

Similarly, for any constant k,

L�k y�t�� � a�t� d2

dt2 �k y�t�� � b�t� d
dt

�k y�t�� � c�t��k y�t��

� k a�t� d2

dt2 �y�t�� � k b�t� d
dt

�y�t�� � k c�t��y�t��

� k L�y�t��

These two observations can be combined in the following single assertion,

L�C1 y1�t� � C2 y2�t�� � C1 L�y1�t�� � C2 L�y2�t��, �1. 3�

which holds for all constants C1, C2 and all functions y1�t�, y2�t�. Any operator L having
property (1.3) is said to be a linear operator. A differential equation, like (1.1), for which the
associated operator, (1.2), is linear is said to be a linear differential equation. The word
linear derives from the fact that a real valued function f�x� with the property that
f�C1x1 � C2x2� � C1f�x1� � C2f�x2�, has a straight line for its graph of f(x) versus x. The new
definition of linear differential equation is equivalent to the previous definition.

Note that the linearity condition (1.3) implies that if y1�t�, y2�t� are both solutions of the
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homogeneous equation L�y�t�� � 0, then the combination C1 y1�t� � C2 y2�t� is also a
solution of the same equation for all choices of the constants C1, C2. This is known as the
principle of superposition and it holds for all linear homogeneous equations.

What we have just observed is that the set of all solutions to L�y�t�� � 0 is a subspace.
Recall that we encountered subspaces back in the chapter on linear algebra where we
defined a subspace of Rn as a set of vectors that is closed under the operation of forming
linear combinations. The principle of superposition is just the assertion that the set of all
solutions to L�y�t�� � 0 is closed under the operation of forming linear combinations and is
therefore a subspace.

Here we are not dealing with vectors but rather a set of functions, y�t�, defined for t � 0,
which satisfy the homogeneous differential equation L�y�t�� � 0. This includes the tacit
assumption that the functions all have first and second order derivatives so that they can be
substituted into the second order operator, L���. We will define this set, S, as the solution
space for the differential operator, L. That is, S � �y�t� : L�y� � 0� so S is analogous to the
null space of a matrix A. We will be interested in the dimension of the solution space S. We
recall that the dimension of a subspace is equal to the maximum number of linearly
independent vectors in the subspace and we previously defined linear independence for
vectors. The meaning of linear independence for functions is essentially the same as for
vectors in Rn.

Definition A set of functions �y1�t�, y2�t�,� , yN�t��, all of which are defined on an interval,
I, are said to be linearly independent if the following statements are equivalent:

1. C1y1�t� � C2 y2�t� �� ,�CN yN�t� � 0 for all t in I
2. C1 � C2 ��� CN � 0.

It is obvious that 2. always implies 1. but the converse is only true if the functions are
linearly independent on the interval, I. Essentially, a set of functions is linearly independent
if none of the functions can be expressed as linear combinations of the remaining functions.
Now we need a method for determining if a collection of vectors is or is not linearly
independent. For this purpose we define

W�y1, y2 ��t� �
y1�t� y2�t�

y1
� �t� y2

� �t�
� y1�t�y2

� �t� � y2�t�y1
� �t�.

Here W�y1, y2 ��t� is called the "Wronskian determinant" for the functions y1 and y2.Then we
can prove the following results:

Lemma 1.1
If y1, y2 � S then either W�y1, y2 ��t� � 0 for all t, or else W�y1, y2 ��t� is never zero for any t.

Lemma 1.2
Functions y1, y2 � S are independent if and only if W�y1, y2 ��t� � 0.

The proofs of the results in this section will be found in the appendix to this chapter. For
now, it is only necessary to state the results.The next lemma is an auxiliary result whose
only purpose is to prove the lemmas about existence and uniqueness of solutions to
L�y�t�� � 0. Note that lemma 1.3 implies that if y � S satisfies y�0� � y ��0� � 0, then y�t� is
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zero for all t � 0.

Lemma 1.3
If y � S then

C e�kt � y�t�2 � y ��t�2 � C ekt

where

C � y�0�2 � y ��0�2 and k � 1 � |b| � |c|.

The next lemma asserts that there cannot be more than one solution to the initial value
problem for L.

Lemma 1.4
For arbitrary constants, A, B there exists at most one y � S such that
y�0� � A and y ��0� � B.

Combining lemmas 1.4 and 1.5 allows us to assert that

For arbitrary constants, A, B there exists one and only one solution for

L�y�t�� � 0 with y�0� � A and y ��0� � B.

Lemma 1.5
For arbitrary constants, A, B there exists at least one y � S such that
y�0� � A and y ��0� � B.

Finally, we have a lemma which tells us the dimension of S, it is 2.

Lemma 1.6
Let y1, y2 � S be linearly independent. Then every y � S can be written uniquely in the form
y�t� � C1y1�t� � C2y2�t�.

The assertion of this lemma is that there are at least two independent functions in S but any
set of three or more functions in S must be dependent. That is, S is a two dimensional
subspace of the smooth functions defined for t � 0.

Now that we have this information about the set of solutions to a second order linear ODE,
we begin the process of finding the solutions.

2. Equations With Constant Coefficients- Homogeneous Solution
An equation of the form (1.1) is still more difficult to solve than we are prepared to handle in
this course. We will consider the simpler situation in which the coefficients in the equation
are all constants. This is an equation of the form,

a y" �t� � b y ��t� � c y�t� � f�t�. �2. 1�

and we will begin by considering the even simpler situation where the equation is
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homogeneous,

a y" �t� � b y ��t� � c y�t� � 0. �2. 2�

To solve this equation we note that if y�t� � ert is substituted into (1.5) we get
a r2er t � brer t � cer t � �ar2 � br � c�ert � 0,

and this is satisfied if and only if r solves ar2 � br � c � 0. If the roots of this quadratic
equation are denoted by r1 and r2 then er1t and er2t are both solutions of the equation (2.2).
By the principle of superposition then C1er1t � C2er2t is also a solution of (2.2) for all choices
of the constants C1, C2, and we will refer to this as the general homogeneous solution. Then
the problem of finding solutions for (2.2) is reduced to the problem of finding the roots of the
auxiliary equation

ar2 � br � c � 0 �2. 3�

Examples
1) Consider the equation

y " �t� � 2y ��t� � 3y�t� � 0.

The auxiliary equation is

r2 � 2r � 3 � 0

with roots r � 1,�3.Then y1�t� � e t and y2�t� � e�3t are both solutions for the differential
equation. The function y�t� � C1e t � C2e�3t is the general homogeneous solution.

2. Consider the equation

y " �t� � 36y�t� � 0.

The auxiliary equation in this case is

r2 � 36 � 0

with imaginary roots r � 6i, � 6i. Then y1�t� � e i 6t and y2�t� � e�i 6 t are both solutions for
the differential equation. However, these solutions are both complex valued functions and
we generally prefer a real valued solution to an equation with real coefficients. If we recall
the definitions of the sine and cosine functions

sin��� � e i� � e�i�

2i
and cos��� � e i� � e�i�

2
,

then we see that we can form new solutions to the differential equation as follows

y3�t� �
y1�t� � y2�t�

2
� cos�6t�

and y4�t� �
y1�t� � y2�t�

2i
� sin�6t�.

The functions y3�t� and y4�t� are two new solutions to the differential equation and
y�t� � C1 cos�6t� � C2 sin�6t� is the general homogeneous real valued solution for all choices
of C1, C2.

3. Consider the equation

y " �t� � 2y ��t� � 36y�t� � 0.

The auxiliary equation in this case is
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r2 � 2r � 36 � 0,

and its roots are the complex conjugate pair, r� � �1 � i 35 .Then

y1�t� � e��1�i 35 � t � e�te i 35 t

and y2�t� � e��1�i 35 � t � e�te �i 35 t

are both solutions for the differential equation. In this case, forming the combinations

y3�t� �
y1�t� � y2�t�

2
and y4�t� �

y1�t� � y2�t�
2i

,

leads to

y3�t� � e�t cos t 35 and y4�t� � e�t sin t 35 .

Evidently, when the roots of the auxiliary equation are the complex conjugate pair,
r � � � i�, then the corresponding real valued solutions of the differential equation are

y3�t� � e�t cos�� t� and y4�t� � e�t sin�� t�,

and y�t� � e�t�C1 cos��t� � C2 sin��t�� is the general homogeneous solution.

4. Finally, consider the equation

y " �t� � 2y ��t� � y�t� � 0.

The auxiliary equation in this case is, r2 � 2r � 1 � 0, which has repeated roots,
r � �1,�1.Then one solution of the differential equation is the function y�t� � e��t, but we
expect a second solution. To see what it should be, we note that substituting the guess ert

into the differential equation (1.5) led to

L�ert � � P�r�ert � 0, where P�r� � ar2 � br � c.

Then we observed that ert solves the differential equation if r is a root of the auxiliary
equation, P�r� � 0. When the auxiliary equation is P�r� � r2 � 2r � 1 � �r � 1�2 � 0, we
have not only P�1� � 0, we have P ��1� � 0 as well. That is, when a quadratic equation has
a double root at r � r0 then we have P�r0� � P ��r0� � 0.Then notice that since

d
dr

L�ert � � d
dr

�P�r�ert�

and
d
dr

L�ert � � L d
dr

ert � L�t ert �,

d
dr

�P�r�ert� � P ��r�ert � P�r� rert,

it follows that,

L�t er0t � � P ��r0�er0t � P�r0� r0er0t � 0.

That is, when the quadratic auxiliary equation has a double root at r � r0, then two
solutions of the differential equation are the functions,

y1�t� � er0t and y2�t� � t er0t

and then the function y�t� � C1er0t � C2 ter0t is the general homogeneous solution for the
differential equation.�

In each of the previous examples, the equation had two solutions, and in each case these
two solutions were linearly independent. The result Theorem *.* asserts that every linear
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second order homogeneous differential equation has exactly two linearly independent
solutions. Note that in examples 2 and 3 we found four solutions for the homogeneous
equations there but in both cases, there are only two linearly independent solutions. The
remaining two solutions can be expressed as linear combinations of the other two solutions.
In the four examples above, we have found two linearly independent real valued solutions
for the homogeneous differential equation in the example. We can summarize what we
found in these examples in the following table.

Roots of the aux eqn Lin.Indep. solns of homog ODE

distinct real roots r1, r2 y1�t� � er1t, y2�t� � er2t

imaginary pair r � � i� y1�t� � cos��t�, y2�t� � sin��t�

conjugate pair r � � � i� y1�t� � e�t cos��t�, y2�t� � e�t sin��t�

double real root r1, r1 y1�t� � er1t, y2�t� � t er1t

If y1�t� and y2�t� are linearly independent solutions of the homogeneous equation (2.2), then
the general solution of (2.2) is given by y�t� � C1y1�t� � C2 y2�t�. The general solution
contains two arbitrary constants and we say, therefore, that the general solution of a second
order homogeneous ODE is a 2-parameter family of solutions. The constants C1 and C2 are
the parameters and they provide the flexibility to satisfy, not just one, but two initial
conditions. This is what is required if we are to solve initial value problems of the form

a y" �t� � b y ��t� � c y�t� � 0, y�t0� � A0, y ��t0� � A1.

Once the general solution y�t� � C1y1�t� � C2 y2�t� has been found, we simply write

y�t0� � C1y1�t0� � C2 y2�t0� � A0

y ��t0� � C1y1
� �t0� � C2 y2

� �t0� � A1,

and we solve this set of two equations for the two unknowns C1 and C2. The resulting
function with these two values for C1 and C2 is then the unique solution to the initial value
problem.

Example
Consider

y" �t� � 2 y ��t� � 3 y�t� � 0, y�0� � 2, y ��0� � �2.

The general solution for the differential equation was found in a previous example to be,

y�t� � C1e t � C2e�3t.

Then the initial conditions imply
y�0� � C1e0 � C2e0 � C1 � C2 � 2

y ��0� � C1e0 � 3C2e0 � C1 � 3C2 � �2.

We solve the two equations generated by the initial conditions to get, C1 � 1, C2 � 1.Then
y�t� � e t � e�3t is the unique solution of the initial value problem.

Clearly solving constant coefficient differential equations of order higher than two can be
accomplished in same way, by assuming a solution of the form y�t� � ert. Substituting this
into the n-th order differential equation leads to an algebraic equation of degree n for the
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roots r. In general, such an algebraic equation will have n roots r1, . . . , rn and then the
independent solutions to the differential equation are er1t, . . . , ernt. Obviously there is the
possibility of repeated roots and complex roots but these can be dealt with in the same way
as in the order two case.

3. Free Response of a Spring Mass System
As a particular example of a second order homogeneous linear equation with constant
coefficients, we are going to consider a system consisting of a mass suspended on an
elastic spring. If the spring is unstretched and the mass, m, is attached to the spring, the
spring stretches an amount �. Since it is the weight of the mass that stretches the spring by
this amount, we have the following equation

mg � K�,

where g denotes the acceleration of gravity. This is just the assertion that the amount of
stretch �, is proportional to the weight of the mass and the constant K is called the spring
constant. This is sometimes referred to as Hooke’s law. Gravity exerts a force mg on the
mass and the spring exerts an equal and opposite force equal to K� so that the
spring-mass system is in a state of equilibrium.

Now we define our coordinate system to have its origin ( x � 0 ) at the point where the
mass is located when the system is in its equilibrium position, and we will take x to be
positive in the downward direction. We now apply Newton’s law to the spring-mass system,
that is the mass times acceleration equals the sum of the forces acting on the mass. We let
x�t� denote the position of the mass at time t and then x ���t� is the acceleration. The forces
that act on the mass are the force of gravity and the spring force so the equation expressing
Newton’s law becomes,

mx ���t� � mg � K�x�t� � ��

� �Kx�t�.

The equation mx ���t� � �Kx�t� is the equation of so-called "simple harmonic motion" and the
system is called a harmonic oscillator. We consider this equation in detail in this section.
We mention in passing that this equation and the modified versions we consider next, occur
in numerous other physical settings. In particular, LCR electric circuits lead to these same
differential equations.

Suppose that the mass is subject to the additional effect of viscous damping, meaning
that the mass experiences a force which is opposite to the motion and proportional to the
velocity of the mass. Then a mathematical model for the motion of the damped spring mass
system is obtained by equating the mass times the acceleration to the sum of the spring
force and the viscous friction force,

m a � mg � FSpring � FFriction

mx" �t� � mg � �K �x�t� � D� � c x ��t�.

The constant c is assumed to be positive so the force �cx ��t� is acting in opposition to the
motion of the mass.Then the mathematical model for a damped spring-mass system with
no forcing and initial conditions that correspond to an initial displacement of the mass by the
amount x0, and an initial velocity of v0 for the mass is as follows,

mx" �t� � �K x�t� � c x ��t� x�0� � x0, x ��0� � v0.

There are four cases we will consider:
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1) The undamped case- c � 0
In this case where there is no damping, the differential equation becomes
mx" �t� � K x�t� � 0. The characteristic equation is then, mr2 � K � 0, and its roots are the

imaginary pair r � � i�, where � � K
m denotes the so called natural frequency of the

system.
The real valued independent solutions in this case are,

x1�t� � cos �t and x2�t� � sin �t, and the general solution is then

x�t� � C1 cos �t � C2 sin �t.

The initial conditions imply, x�0� � C1 � x0, and x ��0� � �C2 � v0 hence the unique
solution to the initial value problem is

x�t� � x0 cos �t � v0

�
sin �t.

This is a solution whose amplitude does not decrease with time and whose frequency, �,
increases as the stiffness K of the spring increases and decreases as the mass m
increases.

0.5 1.0 1.5 2.0 2.5 3.0
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-0.5

0.0

0.5

1.0
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y

x0 � v0 � 1 and � � 3 and 9
2) The Damped Case c � 0
When damping is present, the differential equation, mx" �t� � cx ��t� � K x�t� � 0 has as its
characteristic equation, mr2 � cr � K � 0. Then the roots are a complex conjugate pair
given by

r1,2 �
�c � c2 � 4Km

2m

There are three distinct cases that can occur, each with its own characteristic solution
behavior:

(a) the underdamped case 0 	 c2 	 4Km
In this case the roots are a complex conjugate pair r1,2 � �� � i� where � � c

2m
and

� �
4Km � c2

2m

� K
m 1 � c2

4mK

� � 1 � �2 	 �.

Here we have introduced the constant � � c
2 mK

, which is a measure of the damping called

the "damping ratio". Then 0 	 c2 	 4Km is the same as 0 	 �2 	 1.
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Note that one effect of the damping is to reduce the frequency at which the system
oscillates. The frequency of oscillation for the damped system decreases from the natural
frequency �, to a lower frequency, �. In this case two independent real valued solutions are
x1�t� � e��t cos �t and x2�t� � e��t sin �t,and the general solution is

x�t� � C1 e��t cos �t � C2 e��t sin �t.

Then x�0� � C1 � x0 and x ��0� � ��C1 � �C2 � v0, so the unique solution to the initial
value problem is

x�t� � x0 e��t cos �t � v0 � �x0
� e��t sin �t.

Since � � � c
2m

	 0, this is an oscillating solution whose amplitude decreases

exponentially as time increases. The following figure shows the undamped and
underdamped solutions plotted on the same axes.
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m � 1 K � 9 c � 0. 5
It is clear from the figure that each amplitude peak of the damped solution is less than the
previous peak so the amplitude is steadily decreasing. It is also clear that the system
oscillates more slowly than when there is no damping.

(b) the critically damped case c2 � 4Km or � � 1
As the damping is increased, the damped frequency, �, decreases until finally reaching
zero when c2 � 4Km. At this point, the system no longer oscillates at all and the character
of the solution changes. In this case, the roots of the characteristic equation are real and
equal with the value r1,2 � �� � � c

2m
. Then x1�t� � e��t and x2�t� � t e��t are two linearly

independent solutions and the general solution is x�t� � C1e��t � C2 t e��t.The initial
conditions are satisfied by the following unique solution

x�t� � x0 e��t � �v0 � �x0� t e��t.

This solution decays to zero without oscillating.

(c) the overdamped case c2 � 4Km or � � 1
When the damping increases beyond the critical point c2 � 4Km, the characteristic equation
has distinct real roots
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r1,2 �
�c � c2 � 4Km

2m

� � c
2m

� c
2m

2
� K

m

� �� � �,

where � � c
2m

2
� K

m 	 �

both of which are negative since � � � � 	 �� 	 �� � � 	 0. This leads to the general
solution

x�t� � C1e������t � C2 e������t

and the unique solution that satisfies the initial conditions is given by

x�t� �
v0 � �� � ��x0

2�
e������t � v0 � �� � ��x0

2�
e������t

This solution, like the critically damped solution, decays to zero without oscillating. Note that
if x0 � 0 and v0 � 0, then the overdamped solution decays to zero less rapidly than the
critically damped solution. This is shown in the figure below where both solutions are plotted
on the same axes. This is because when the damping is increased beyond the critical value,
not only is the oscillation suppressed, the motion of the mass is further impeded so that a
mass released from rest takes longer to return to the equilibrium position. Heavy doors are
often equipped with a spring device that pulls the door shut but the motion is sufficiently
damped that the door can not slam. For this to work properly, the damping must equal or
exceed the critical value.
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Overdamped and Critically Damped Solutions

If the initial conditions are changed to x0 � 0 and v0 � 0, then both solutions begin from
the equilibrium position, x � 0, and rise to a maximum displacement before decreasing
back to x � 0. This is illustrated in the figure below. The critically damped solution reaches
a higher maximum deflection than does the overdamped solution and therefore takes a
longer time to decay to zero. This set of initial conditions is a reasonable approximation of
the situation that occurs when a shock absorber is actuated by a car hitting a bump. The
shock absorber is compressed by the bump but returns to the uncompressed state without
oscillating as long as the damping exceeds the critical value. If the damping is less than the
critical value, then the car will bob up and down after hitting a bump. It is time then to
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replace the shock absorbers.
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Initial Conditions x0 � 0, v0 � 0

Decay of the Total Energy
The unforced damped spring mass system is governed by the differential equation

mx" �t� � c x ��t� � K x�t� � 0

hence if we define the total energy E�t� in the system to be the sum of kinetic energy and
potential energy, then

E�t� � 1
2

mx ��t�2 � 1
2

K x�t�2

then

E ��t� � 1
2

m2 x ��t�x" �t� � 1
2

K 2 x�t�x ��t�

� x ��t��mx" �t� � K x�t�� � �c x ��t�2

If c � 0 (the undamped case) then E ��t� � 0, so the the total energy is constant; the energy
only changes from kinetic to potential and back again. At the instant when the mass
reaches its maximum deflection, the velocity is zero and the energy is all potential energy
stored in the spring. At the instant when the mass passes through the equilibrium position at
x � 0, the velocity is maximal and the energy is all kinetic since the potential energy is zero
when the spring is in its equilibrium state. If c � 0, then E ��t� � �c x ��t�2 	 0 so the energy
is decreasing, which is why the friction is referred to as an energy dissipating mechanism.
The rate at which energy is dissipated increases as the damping increases.

The equation of the undamped and damped harmonic oscillator applies to other
physical systems besides the spring-mass system. These include electric circuits and
bouyant object floating in a fluid.

4. Forced Response of a Spring Mass System
We are going to consider the response of the spring-mass system when it is subject to a
forcing function. This is also called the forced harmonic oscillator. In addition to an elastic
system, the equation governs electric circuits with a voltage input. Since the forced system
involves the inhomogeneous ODE, we are going to recall the method of undetermined
coefficients as it applies to a linear second order ODE with constant coefficients. This
simple method of finding a particular solution for an inhomogeneous equation will be
sufficient for the few examples we consider in this section. In the next section we will
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present a more general method of finding particular solutions to a second order linear ODE.

4.1 The Method of Undetermined Coefficients
Consider the equation

L�y�t�� � ay ���t� � by ��t� � cy�t� � f�t�.

One way of determining a particular solution is by the method of undetermined coefficients.
For simple forcing functions f�t� it is often easy to guess the form of the particular solution
and to then determine the coefficients in the form from substituting into the equation. A list
of forms to be guessed for various simple forcing functions is provided by the following
table, with the forcing function f�t� in the left hand column of the table and the appropriate
guess for yp�t� in the right hand column:

f�t� yp�t�

a A

bt A � Bt

ct2 A � Bt � Ct2

a � bt � ct2 A � Bt � Ct2

ebt Aebt

tebt �A � Bt�ebt

sin�t A sin�t � B cos�t

cos�t A sin�t � B cos�t

For example, consider

y ���t� � 25y�t� � 3 sin 4t

According to the table we should suppose
yp�t� � A sin 4t � B cos4t

Then
yp
� �t� � 4A cos4t � 4B sin 4t

yp
���t� � �16A sin 4t � 16B cos4t

and
yp
���t� � 25yp�t� � �16A sin 4t � 16B cos4t � 25�A sin 4t � B cos4t�

� 9A sin 4t � 9B cos4t.

The original differential equation implies that 9A sin 4t � 9B cos4t � 3 sin 4t, from which it
follows that A � 1

3 and B � 0.
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This was a particularly simple example. A more complicated example arises if we
consider

y ���t� � 2y ��t� � 25y�t� � 3 sin 4t

If we make the same guess for yp�t�, then
y ���t� � 2y ��t� � 25y�t� �

� �16A sin 4t � 16B cos4t � 2�4A cos4t � 4B sin 4t� � 25�A sin 4t � B cos4t�

� ��16A � 8B � 25A� sin 4t � ��16B � 8A � 25B�cos4t

� �9A � 8B� sin 4t � �9B � 8A�cos4t

Then it follows from the original differential equation that
9A � 8B � 3

and 9B � 8A � 0

i.e.,
A � 27

145 B � � 24
145

and yp�t� � 27
145 sin 4t � 24

145 cos4t

Finally, consider the example

y ���t� � 2y ��t� � 25y�t� � 3te�t

We guess that yp�t� � �A � Bt�e�t

Then
yp
� �t� � Be�t � �A � Bt�e�t � �B � A � Bt�e�t

yp
���t� � �2Be�t � �A � Bt�e�t � �A � 2B � Bt�e�t

and so the equation implies

yp
���t� � 2yp

� �t� � 25yp�t� � ��A � 2B � Bt� � 2�B � A � Bt� � 25�A � Bt��e�t

� �24A � 24Bt�e�t � 3te�t

Then A � 0 and B � 1
8 , so yp�t� � 1

8 te�t.

Now we consider some applications related to the spring-mass system that lead to
problems with simple forcing functions.

4.2. The Undamped Forced Response
Consider a periodically forced, undamped spring mass system, starting from rest in a
relaxed state. Then governing equation is
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mx" �t� � K x�t� � F cos �t,

x�0� � 0, (system is initially relaxed)

x ��0� � 0 (system is initially at rest)

Let � � K
m and suppose � � �. The homogeneous solution is known to be

x�t� � C1 cos�t � C2 sin�t,

and if we suppose the particular solution is of the form
xp�t� � A cos�t � B sin�t,

then
��m�2A � KA�cos�t � ��m�2B � KB� sin�t � F cos �t.

Equating coefficients leads to

A � F
m

1
K
m � �2

� F
m

1
�2 � �2 ,

B � 0.

Then

xp�t� � F
m

1
�2 � �2 cos�t

and the general solution is

x�t� � C1 cos�t � C2 sin�t � F
m

1
�2 � �2 cos�t.

The initial conditions imply that

x�0� � C1 �
F
m

1
�2 � �2 � 0,

x ��0� � �C2 � 0,

so

C1 � � F
m

1
�2 � �2 ,

and C2 � 0.

Then

x�t� � F
m

1
�2 � �2 �cos�t � cos�t�.

The solution may look like the following figure
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-0.02

-0.01
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0.02
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y

� � 10 and � � 2
However, when � and � are close, the behavior is much different. In order to better see
how the solution behaves in this case, let

� � 1
2
�� � ��

� � 1
2
�� � ��

Here � is called the "fast frequency" and is equal to the average of two nearly equal
frequencies, � and �. On the other hand, � is very small and is called the "slow frequency".
Then � � � � � and � � � � �, and the trigonometric identity for the cosine of a sum or
difference leads to

cos�t � cos�� � ��t � cos�t cos�t � sin�t sin�t
cos�t � cos�� � ��t � cos�t cos�t � sin�t sin�t

Then cos�t � cos�t � 2 sin�t sin�t. and x�t� can be expressed as

x�t� � F
m

2
�2 � �2 sin�t sin�t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

x

y

� � 13 � � 12
This plot shows how x�t� looks. The enveloping sine curve is the ”slow frequency”
sin�t � sin 1

2 �� � ��t, and the ”fast frequency”, sin�t � sin 1
2 �� � ��t, oscillates inside this

bound. This periodic increase and decrease in amplitude is sometimes referred to as the
phenomenon of ”beats”.
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Returning to the original way of writing the solution,

x�t� � F
m

1
�2 � �2 �cos�t � cos�t�.

we can examine what happens as the forcing frequency �, approaches the natural
frequency �, of the system. We take the limit as � 
 �, and find

lim�
�
cos�t � cos�t

�2 � �2 � t sin�t
2�

where we used L’Hopital’s rule to evaluate the limit. Then, as � tends to �, the solution
tends to the limit,

x�t� � F
2m�

t sin�t

This is the solution when the forcing frequency is the same as the natural frequency of the

spring mass system, � � K
m . This solution, known as the resonant response, has

steadily increasing amplitude as seen in the following plot,

2 4 6 8 10 12 14

-6

-4

-2

0

2

4

6

x

y

The implication of this solution is that in a system with negligible damping, the amplitude of
the response would continue to grow until, at some point, the elastic limit of the system is
exceeded and the system breaks. We will see now how the addition of damping changes
the response.

4.3. The Damped Forced Response
Consider a periodically forced, damped spring mass system, starting from rest in a relaxed
state. Then governing equation in this case is

mx" �t� � c x ��t� � K x�t� � F cos �t,

x�0� � 0, (system is initially relaxed)

x ��0� � 0 (system is initially at rest)

As in the previous section, � � K
m and we suppose first that � � �.

The homogeneous solution is given by
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xH�t� � e�t�C1 cos�d t � C2 sin �dt�

where

� � � c
2m

and �d � �2 � c
2m

2
� � 1 � �2 .

If we suppose the particular solution is of the form
xp�t� � A cos�t � B sin�t,

then
xp
� �t� � �B cos�t � �A sin�t

xp" �t� � ��2A cos�t � �2B sin�t

and mxp" �t� � c xp
� �t� � K xp�t�

� �KA � m�2A � c�B�cos�t � �KB � m�2B � c�A� sin�t � F cos �t.

Equating coefficients on the two sides of this last equation, we obtain
�K � m�2�A � c�B � F

and � c�A � �K � m�2�B � 0.

This leads to

A � K � m�2

�K � m�2�2 � �c��2 F,

B � c�
�K � m�2�2 � �c��2 F

and so the particular solution is,

xp�t� � F
�K � m�2�2 � �c��2 ��K � m�2�cos�t � �c�� sin�t�,

� F

�K � m�2�2 � �c��2
� cos �cos�t � sin� sin�t�.

We have written the solution in terms of the phase shift �, where

cos � � K � m�2

�K � m�2�2 � �c��2
,

sin � � c�

�K � m�2�2 � �c��2
,

i.e., � � Tan�1 c�
K � m�2 .

Then the particular solution can be written as,

xp�t� � F

�K � m�2�2 � �c��2
cos��t � ��

and the general solution is,

x�t� � e��t�C1 cos�d t � C2 sin �dt� � F

�K � m�2�2 � �c��2
cos��t � ��

Now the initial conditions imply
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C1 �
F

�K � m�2�2 � �c��2
cos� � 0

� �C1 � �dC2 �
F

�K � m�2�2 � �c��2
� sin� � 0

and this leads to the result

C1 � �F

�K � m�2�2 � �c��2
cos�

C2 � �F

�K � m�2�2 � �c��2
�
�cos� � � sin�

�d
�.

Now the unique solution to the initial value problem is

x�t� � F

�K � m�2�2 � �c��2
� cos��t � �� � e��t�cos�cos�d t �

�cos� � � sin�
�d

sin �dt��

Clearly the steady state part of the solution is given by

xss�t� � F

�K � m�2�2 � �c��2
cos��t � ��

The following picture shows the steady state plotted on the same axes as the input. The
input function is the curve having amplitude equal to 1, (we are taking F � 1 and � � 3. 1 for
convenience). The curve that starts at about 1. 4 is the steady state response when K � 9,
m � 1 and c � 0. 1. The magnitude of the response curve is about one and a half times that
of the input and there is very little phase shift. The response curve that starts from nearly 0
corresponds to a larger value for c, namely c � 2. This leads to a response with magnitude
about one tenth of the input amplitude and there is a more significant phase shift. .

1 2 3 4 5 6

-1.5

-1.0
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0.0

0.5

1.0

1.5

x

y

The reason that the steady state output when c � 2 has amplitude less than the input
amplitude while the response when c � 0. 1 has amplitude greater than the amplitude of the
input is illustrated in the following figure.
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Amplification Factor vs � for c �. 1, . 4, 1 with � � 3
Here we have plotted the amplification factor,

|xss�t�|
F

� 1

�K � m�2�2 � �c��2

versus � for three different values of damping, c. The highest amplification occurs for the
smallest value of damping. For c �. 1, the amplification is around 2. 5 at an input frequency
of � � 3. 1, while the amplification is around0. 2 at this same frequency when c � 1. The
middle curve, where the max amplification is about . 8, corresponds to a damping of
c � 0. 4.

Note that when c � 0, the amplification becomes infinite at � � �. Thus the addition of
damping modifies the behavior at resonance from there being an infinite (and physically
meaningless) magnification to where the magnification is finite (and hence physically
reasonable).

5. Variation of Parameters
In this section we will see how the variation of parameters method that we encountered in
finding particular solutions for first order equations can be modified to work for equations of
order two. We continue to restrict our attention to linear equations with constant coefficients.

Consider the initial value problem

L�y�t�� � y" �t� � a y ��t� � b y�t� � f�t�, y�0� � y ��0� � 0.

Suppose y1�t� and y2�t� are two linearly independent solutions of the homogeneous
equation. Then the general solution of the homogeneous equation is given by

yH�t� � C1y1�t� � C2y2�t�.

Motivated by the variation of parameters technique that we used in finding particular
solutions to first order linear ODE’s, we consider a solution for the inhomogeneous second
order equation that has the form

yp�t� � C1�t�y1�t� � C2�t�y2�t� �1�

where the unknown functions C1�t� and C2�t� remain to be found. In preparation for
substituting this guess for the particular solution into the inhomgeneous equation, we
compute
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yp
� �t� � C1

� �t�y1�t� � C2
� �t�y2�t� � C1�t�y1

� �t� � C2�t�y2
� �t�.

Before computing yp
���t�, first we will impose the following condition on C1�t� and C2�t�,

C1
� �t�y1�t� � C2

� �t�y2�t� � 0. �2�

Then,
yp
� �t� � C1�t�y1

� �t� � C2�t�y2
� �t�,

and yp
���t� � C1

� �t�y1
� �t� � C2

� �t�y2
� �t� � C1�t�y1

���t� � C2�t�y2
���t�

Now we have
yp" �t� � a yp

� �t� � b yp�t� � C1
� �t�y1

� �t� � C2
� �t�y2

� �t� � C1�t�y1
���t� � C2�t�y2

���t�

� a�C1�t�y1
� �t� � C2�t�y2

� �t��

�b�C1�t�y1�t� � C2�t�y2�t�� �

� C1
� �t�y1

� �t� � C2
� �t�y2

� �t� � C1�t��y1" �t� � a y1
� �t� � b y1�t��

� C2�t��y2" �t� � a y2
� �t� � b y2�t��

� C1
� �t�y1

� �t� � C2
� �t�y2

� �t� � 0 � 0 � f�t�.

That is, substituting our guess (1) into the differential equation, and taking into account the
condition, �2�, causes the equation to reduce to only the following terms

C1
� �t�y1

� �t� � C2
� �t�y2

� �t� � f�t�. �3�

The rest of the terms cancel out, as they did in the V of P’s for first order equations,
because y1�t� and y2�t� are solutions of the homogeneous equation. Thus the
inhomogeneous differential equation imposes only a single condition on the unknown
functions C1�t� and C2�t�, this is the equation (3). In order to get a unique pair of functions,
we need to impose a second condition on C1�t� and C2�t�. We imposed the condition (2) for
the reason that it made the computations shorter, but we could just as well impose other
conditions on C1�t� and C2�t� if we wanted to.

If we use (2) and (3) to determine C1�t� and C2�t�, then

C1
� �t�y1�t� � C2

� �t�y2�t� � 0. �2�

C1
� �t�y1

� �t� � C2
� �t�y2

� �t� � f�t�. �3�

and we must solve this set of two equations for C1
� �t� and C2

� �t�. Solving leads to

C1
� �t� � � y2�t�

W�y1, y2 ��t�
f�t�, and C2

� �t� �
y1�t�

W�y1, y2 ��t�
f�t�.

Note that the determinant of the algebraic equations for C1
� �t� and C2

� �t� is the Wronskian
determinant for the homogeneous solutions.
These equations are for the derivatives of C1�t� and C2�t�, so we have to integrate to get
the functions. We write this as follows

C1�t� � � �
0

t y2�s�
W�y1, y2 ��s�

f�s �ds, and C2�t� � �
0

t y1�s�
W�y1, y2 ��s�

f�s�ds,

where the limits of integration are 0 (so that C1�0� � 0 and C2�0� � 0 in keeping with the
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homogeneous initial conditions) and t (so that the result of the integration is a function of t,
not just a number). Then

yp�t� � C1�t�y1�t� � C2�t�y2�t�

� y2�t� �
0

t y1�s�
W�y1, y2 ��s�

f�s�ds � y1�t� �
0

t y2�s�
W�y1, y2 ��s�

f�s �ds

� �
0

t y2�t�y1�s� � y1�t�y2�s�
W�y1, y2 ��s�

f�s �ds

� �
0

t
Y�t, s� f�s �ds.

Here we have combined the expressions involving C1�t�y1�t� and C2�t�y2�t� to write

yp�t� � �
0

t
Y�t, s� f�s �ds

where

Y�t, s� �
y2�t�y1�s� � y1�t�y2�s�

W�y1, y2 ��s�
.

We have a reason for writing the solution this way. We are solving the equation
L�yp�t�� � f�t�

where L denotes the differential operator L�y�t�� � y" �t� � a y ��t� � b y�t�. Then we have just
found that the solution of the equation is given by

yp�t� � K�f�t�� :� �
0

t
Y�t, s� f�s �ds,

where K denotes the integral operator defined in the equation above. The implication is that
K � L�1; i.e., the integral operator K is the inverse of the differential operator L. We will not
pursue this idea further but we should at least realize that in solving the inhomogeneous
differential equation, we are in fact inverting the differential operator.

Note, incidentally that

yp�0� � �
0

0
Y�t, s� f�s �ds � 0

and

yp
� �t� � Y�t, t�f�t� � �

0

t d
dt

Y�t, s� f�s �ds

so

yp
� �0� � Y�0, 0�f�0� � �

0

0 d
dt

Y�t, s� f�s �ds � 0.

Evidently, the initial conditions are automatically satisfied because we chose the lower limit
in the integral to be the point at which the initial conditions are imposed, namely t � 0.

We note in passing that if we have solved the homogeneous equation to find two
independent solutions, y1�t� and y2�t�, then we can form Y�t, s� without going through the
variation of parameters procedure simply by writing
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Y�t, s� �
y2�t�y1�s� � y1�t�y2�s�

W�y1, y2 ��s�

and then

yp�t� � �
0

t
Y�t, s� f�s �ds

is the particular solution which satisfies yp�0� � yp
� �0� � 0. If we have nonzero initial

conditions to satisfy, we simply add C1y1�t� � C2y2�t� to the particular solution and solve for
C1 and C2.

Example
Consider

y" �t� � �2y�t� � f�t�, y�0� � y ��0� � 0,

where the forcing function, f�t�, is unspecified at this point. Later, we can substitute specific
examples for f�t�.Then

yH�t� � C1 cos �t � C2 sin �t,

and we let
yp�t� � C1�t�cos �t � C2 �t� sin �t.

Then
C1

� �t� cos �t � C2
� �t� sin �t � 0,

C1
� �t� ��� sin �t� � C2

� �t��cos �t � f�t�,

where the first equation is the arbitrary condition, �2, � that we imposed and the second
equation is the consequence of substituting yp�t� into the differential equation. Then

C1
� �t� � � y2�t�

W�y1, y2 ��t�
f�t� � � 1

� sin �t f�t�,

C2
� �t� �

y1�t�
W�y1, y2 ��t�

f�t� � 1
� cos �t f�t�,

where we made use of the fact that,

W�y1, y2 ��t� �
cos �t sin �t

�� sin �t �cos �t
� �

Then

C1�t� � � �
0

t 1
� sin �s f�s �ds, C2�t� � �

0

t 1
� cos �s f�s�ds,

and
yp�t� � C2 �t� sin �t � C1�t�cos �t

� �
0

t 1
� �cos �s sin �t � sin �s cos �t� f�s�ds,

� �
0

t 1
� sin ��t � s� f�s�ds.

If we are given a specific definition for f�t� then we can compute the integral. For example, if
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f�t� �
1 if 0 	 t 	 1

0 if t � 1

then

yp�t� � �
0

t 1
� sin ��t � s� ds. if 0 	 t 	 1

� �
0

1 1
� sin ��t � s� ds. if t � 1.

Integrating, we find

yp�t� �

1
�2 �1 � cos �t� if 0 	 t 	 1

1
�2 �cos ��t � 1� � cos �t� if t � 1

An inhomogeneous equation with a piecewise defined forcing function is handled more
easily using variation of parameters than trying to use undetermined coefficients.

Exercises
In each of the following problems, find the homogeneous solution, find a particular solution
and find the general solution to the inhomogeneous equation. If there are initial conditions,
evaluate the arbitrary constants to find the unique solution to the initial value problem.

1. y ���t� � 3y ��t� � 4y�t� � e�t y�0� � 0, y ��0� � 2

2. y ���t� � 3y ��t� � 2y�t� � e t

3. y ���t� � y ��t� � 2y�t� � 2 cos t

4. y ���t� � 5y ��t� � 6y�t� � 2 cos2t y�0� � 0, y ��0� � 2

5. y ���t� � 3y ��t� � 4y�t� � 2 sin 4t

In each of the following problems, find a particular solution for the following equations by
using variation of parameters:
6. y ���t� � 16y�t� � 3 sec 4t

7. y ���t� � 12y ��t� � 3y�t� � e�t2 you can leave the solution in the form of an integral

8. y ���t� � 4y ��t� � 3y�t� �
2 0 	 t 	 2

0 otherwise

6. Laplace Transform
In this section we are going to present a method for finding the unique solution to initial
value problems for linear differential equations with constant coefficients. It can be applied
to equations of any order but we are going to consider only equations of order one or two.
This method finds the unique solution to an initial value problem all in one step without first
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having to find the homogeneous solution and then a particular solution.

Definition (Laplace Transform) Let f�t� be defined for t � 0 and let the Laplace transform of
f�t� be defined by,

L�f�t�� � �
0

�
e�stf�t�dt � f��s�

We use the two notations, L�f�t�� and f��s�, interchangeably to denote the Laplace transform
for f�t�.

Examples:

1. f�t� � 1, �t � 0, L�1� � �
0

�
e�st dt � e�st

�s |t�0
t�� � 1

s � f��s� for s � 0

2. f�t� � ebt, �t � 0, L�ebt � � �
0

�
e��b�s�t dt � e��b�s�t

�s � b�
|t�0
t�� � 1

s � b
� f��s�, for s � b.

The Laplace transform is defined for all functions of exponential type. That is, any function
f�t� which is:
	 piecewise continuous;i.e., f has at most finitely many finite jump discontinuities on

any interval of finite length
	 has exponential growth;i.e., for some positive constants M and k,

|f�t�| � M ekt for all t � 0. .

Properties of the Laplace Transform
The Laplace transform has the following general properties:
1. L�C1f�t� � C2g�t�� � C1f��s� � C2ĝ�s�

2. L�f�at�� � 1
a f� s

a for a � 0

3. L�f ��t�� � s f��s� � f�0�
4. L�f ���t�� � s2 f��s� � sf�0� � f ��0� etc

5. L�t f�t�� � � f� ��s�
6. L�t2 f�t�� � ��1�2 f� ���s� etc

7. L�ebt f�t�� � f��s � b�

To see that 3 is true, write

L�f ��t�� � �
0

�
e�stf ��t�dt

� e�stf �t�|t�0
t�� � �

0

�
��se�st� f �t�dt

� �f�0� � s �
0

�
e�stf �t�dt

� s f��s� � f�0�,

where we used integration by parts on the first integral. Since the derivative of f ��t� is f ���t�,
we can apply �3� to f ��t�, to get �4�,
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L�f ���t�� � sL�f ��t�� � f ��0�

� s s f��s� � f�0� � f ��0�

� s2 f��s� � sf�0� � f ��0�

To show 5, just note that
d
ds

f��s� � d
ds
�

0

�
e�stf �t�dt

� �
0

� d
ds

e�stf �t�dt

� �
0

�
�t e�stf �t�dt

� L��t f�t��.

Property 6 can be obtained by applying property 5 twice; i.e., L�t2 f�t�� � L��t��tf�t���.

Finally, property 7 arises from,

L�ebt f�t�� � �
0

�
ebt f�t�e�st dt

� �
0

�
f�t�e��s�b�t dt

� f��s � b�.

More Laplace transform Formulas
The properties 1 through 6 are properties of the Laplace transform, and are valid whatever
the function f�t�. These are analogous to properties of the derivative like the product and
quotient rules for differentiation. These properties can be applied to derive more Laplace
transform formulas. The Laplace transform formulas are the Laplace transforms of specific
functions and are analogous to differentiation formulas like the derivatives for xp, ex, etc. For
example,

L�t� � L�t � 1� � � d
ds

1
s � 1

s2

L�t2 � � L�t � t� � � d
ds

1
s2 � 2

s3

L�t3 � � L�t � t2 � � � d
ds

2
s3 � 6

s4

and, more generally,

L�tn � � n!
sn�1 , n � 0, 1, 2, . . .

We can also apply this trick to find the transform of ebt,

L�tebt � � � d
ds

1
s � b

� 1
�s � b�2 .

In addition, if f�t� � sin t, then f ��t� � cos t, and f ���t� � � sin t, hence property 4 implies

L�� sin t� � s2f��s� � sf�0� � f ��0�

� s2f��s� � 1.

But L�� sin t� � � f��s� so
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� f��s� � s2f��s� � 1,

i. e. , f��s� � 1
s2 � 1

.

Similarly, if g�t� � cos t, then g��t� � � sin t, and g���t� � �cos t, so

L��cos t� � s2ĝ�s� � sg�0� � g��0�

� s2ĝ�s� � s

But L��cos t� � �ĝ�s�, so

� ĝ�s� � s2ĝ�s� � s,

i. e. , ĝ�s� � s
s2 � 1

Furthermore, property 2 implies that

L�sin �t� � 1
� f� s

�

� 1
�

1
s
�

2
� 1

� �
s2 � �2 .

and

L�cos �t� � 1
� ĝ s

�

� 1
�

s
�

s
�

2
� 1

� s
s2 � �2 .

In addition

L�t sin� t� � � d
ds

�
s2 � �2

� 2�s
�s2 � �2�2

and

L�t cos � t� � � d
ds

s
s2 � �2

� s2 � �2

�s2 � �2�2 .

We can use property 7 together with the results
L�sin �t� � �

s2 � �2

and L�cos �t� � s
s2 � �2

to derive the formulas
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L�ebt sin �t� � �
�s � b�2 � �2

and L�ebt cos �t� � s � b
�s � b�2 � �2

Application of the Transform
The Laplace transform can be used to solve initial value problems for linear differential
equations having constant coefficients. For example, consider

y ��t� � ky�t� � 5e�kt, y�0� � A.

If we let ŷ�s� denote the Laplace transform of the solution, y�t�, then

sŷ�s� � y�0� � kŷ�s� � �s � k�ŷ�s� � A

and L�5e�kt � � 5
s � k

so �s � k�ŷ�s� � A � 5
s � k

and we can solve this equation for ŷ�s�,

ŷ�s� � A
s � k

� 5
�s � k�2 .

Now we have to find the function y�t� whose Laplace transform is ŷ�s�; i.e., we have to find
the inverse Laplace transform of ŷ�s�. In order to do this we observe that the table of
transforms we have so far developed allows us to find the inverse Laplace transform of the
two parts of ŷ�s�,

L�1 A
s � k

� A L�1 1
s � k

� A e�kt

and

L�1 5
�s � k�2 . � 5 L�1 1

�s � k�2 .

� 5 t e�kt

Combining these two results leads to,

y�t� � A e�kt � 5 t e�kt.

An Additional Property of the Transform
A final property of the Laplace transform allows us to find the function whose Laplace
transform is the product of two Laplace transforms, f��s�ĝ�s�, where we know the functions
f�t� and g�t� whose transforms are f��s� and ĝ�s�. The function whose transform is f��s�ĝ�s� is
not the function f�t�g�t�. Instead it is the following,

L��f 	 g��t�� � f��s�ĝ�s�

where �f 	 g��t� : � �
0

t
f�t � ��g���d�

The product, �f 	 g��t� , is called the convolution product of f and g. Life would be simpler
if the inverse Laplace transform of f��s�ĝ�s� was the pointwise product f�t�g�t�, but it isn’t, it
is the convolution product. The convolution product has some of the same properties as the
pointwise product, namely
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�f 	 g��t� � �g 	 f��t�

and �h 	 �f 	 g���t� � ��h 	 f� 	 g��t�.

We will not give the proof of this result but will make use of it nevertheless.

Examples
1. Consider the problem

y" �t� � 2 y ��t� � 10 y�t� � 1, y�0� � y ��0� � 0.

Transforming this problem leads to

�s2 � 2s � 10�ŷ�s� � 1
s ,

and

ŷ�s� � 1
s

1
s2 � 2s � 10

� 1
s

1
�s � 1�2 � 9

� f��s�ĝ�s�.

We know that L�1 1
s � 1, and L�1 3

�s � 1�2 � 9
� e�t sin 3t. Then by the convolution

property of the transform,
y�t� � �f 	 g��t�

: � �
0

t
f�t � ��g���d�

� �
0

t
1�t � ��e�� sin 3�d�

� �
0

t
e�� sin 3�d�

� 3
10

� 3
10

e�t cos�3t� � 1
10

e�t sin�3t�.

2. Consider now,

y" �t� � 2 y ��t� � 10 y�t� � 1, y�0� � 6, y ��0� � 3.

In this case we have

s2ŷ�s� � 6s � 3 � 2�sŷ�s� � 6� � 10ŷ�s� � 1
s

or

�s2 � 2s � 10�ŷ�s� � 1
s � 6s � 15,

Then

ŷ�s� � 1
s

1
�s � 1�2 � 9

� 6s � 15
�s � 1�2 � 9

Now
6s � 15

�s � 1�2 � 9
� 6s � 6

�s � 1�2 � 9
� 9

�s � 1�2 � 9

The first term on the right above can be inverted using formula 10 from the table of Laplace
transforms and the second term can be inverted using formula 9. That is
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L�1 6s � 6
�s � 1�2 � 9

� 6L�1 s � 1
�s � 1�2 � 9

� 6e�t cos3t

L�1 9
�s � 1�2 � 9

� 3L�1 3
�s � 1�2 � 9

� 3e�t sin 3t

Then the solution to this last initial value problem is

y�t� � 3
10

� 3
10

e�t cos�3t� � 1
10

e�t sin�3t� � 6e�t cos3t � 3e�t sin 3t

� 3
10

� 5. 7e�t cos3t � 2. 9e�t sin 3t

Exercises

Solve each of the following by the Laplace transform:

1. y ���t� � y ��t� � 2y�t� � 4t2 � 1
y�0� � 1, y ��0� � �1

2. y ���t� � y ��t� � 2y�t� � �t � 3�e3t

y�0� � 1, y ��0� � �1

3. y ���t� � 25y�t� � 3 cos2t
y�0� � 1, y ��0� � �1

4. y ���t� � 2y ��t� � 26y�t� � 2 sin 5t
y�0� � 2, y ��0� � �2

5. y ���t� � y ��t� � 12y�t� � 0
y�0� � 2, y ��0� � 0

6. y ���t� � y ��t� � 12y�t� � 0
y�0� � 0, y ��0� � 2

7. y ���t� � y ��t� � 12y�t� � 1
y�0� � 0, y ��0� � 0

8. y�4��t� � y�t� � 1,
y�0� � 0, y ��0� � 0 y ���0� � 0, y�3��0� � 0

9. y ��t� � y�t� � e t

y�0� � 2,

10. y ��t� � y�t� � e�t

y�0� � 2,
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Use the Laplace transform to evaluate these convolution products:
11. t 	 t

12. sin t 	 t

13. 1 	 1

14. e�t 	 1
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Table of Transform Properties

1. L�C1f�t� � C2g�t�� � C1f��s� � C2ĝ�s�

2. L�f�at�� � 1
a f� s

a for a � 0

3. L�f ��t�� � s f��s� � f�0�

4. L�f ���t�� � s2 f��s� � sf�0� � f ��0� etc

5. L�t f�t�� � � f� ��s�

6. L�t2 f�t�� � ��1�2 f� ���s� etc

7. L�H�t � b� f�t � b�� � e�bs f��s�, for b � 0.

8. L�ebt f�t�� � f��s � b�

9. L��f 	 g��t�� � f��s�ĝ�s� where �f 	 g��t� :� �
0

t
f�t � ��g���d�

Table of Laplace Transform Formulas

1. L�1� � 1
s for s � 0

2. L�ebt � � 1
s � b

for s � b.

3. L�tn � � n!
sn�1 , n � 0, 1, 2, . . .

4. L�tebt � � 1
�s � b�2 .

5. L�sin �t�.� �
s2 � �2 .

6. L�cos �t�.� s
s2 � �2 .

7. L�t sin� t� � 2�s
�s2 � �2�2

8. L�t cos � t� � s2 � �2

�s2 � �2�2 .

9. L�ebt sin �t� � �
�s � b�2 � �2

10. L�ebt cos �t� � s � b
�s � b�2 � �2
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Appendix

Existence and Uniqueness of Solutions
Let

L�y�t�� � y" �t� � by ��t� � c y�t�

S � �y � C2 : L�y� � 0� � the solution space for L

and define

W�y1, y2 ��t� �
y1�t� y2�t�

y1
� �t� y2

� �t�
� y1�t�y2

� �t� � y2�t�y1
� �t�.

Here W�y1, y2 ��t� is called the "Wronskian determinant" for the functions y1 and y2.Then we
can prove the following results:

Lemma 1
If y1, y2 � S then either W�y1, y2 ��t� � 0 for all t, or else W�y1, y2 ��t� is never zero for any t.

Proof- Compute the derivative of W�y1, y2 ��t�,

d
dt

W�y1, y2 ��t� � d
dt �y1�t�y2

� �t� � y2�t�y1
� �t��

� y1�t�y" 2�t� � y1
� �t�y2

� �t� � y1
� �t�y2

� �t� � y2�t�y" 1�t�

� y1�t�y" 2�t� � y2�t�y" 1�t� � y1�t���by2
��t� � c y2�t�� � y2�t���by1

��t� � c y1�t��

� �b�y1�t�y2
� �t� � y2�t�y1

� �t�� � c�y1�t�y2�t� � y2�t�y1�t�� � �bW�y1, y2 ��t�

where we have used the fact that y1, y2 � S. Now

d
dt

W�y1, y2 ��t� � �b W�y1, y2 ��t�.

implies W�y1, y2 ��t� � C ebt

and W�y1, y2 ��t� � W�y1, y2 ��t0�e�b�t�t0�.

From this last equation we can see that if W�y1, y2 ��t0� � 0, then W�y1, y2 ��t� � 0 for every t,
and if W�y1, y2 ��t0� � 0, then W�y1, y2 ��t� is never zero.�

Lemma 2
Functions y1, y2 � S are independent if and only if W�y1, y2 ��t� � 0.
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Proof- Suppose y1, y2 � S satisfy

C1y1�t� � C2y2�t� � 0.

Then, by differentiating with respect to t, we see that we also have

C1y1
� �t� � C2y2

� �t� � 0.

This set of two equations in two unknowns, C1, C2, has a nontrivial solution (C1, C2, not both
zero) if and only if the determinant of the system is equal to zero. But the determinant of
this system is just the Wronskian, W�y1, y2 ��t�, which is either zero for all t or zero for no t.
If the Wronskian is zero for all t, then a nontrivial pair of constants exists and in this case
y1, y2 � S are dependent.
If the Wronskian is nonzero for all t, then the trivial pair of constants is the only solution and
in this case y1, y2 � S are independent.�

Lemma 3
If y � S then

C e�kt � y�t�2 � y ��t�2 � C ekt

where

C � y�0�2 � y ��0�2 and k � 1 � |b| � |c|.

Proof- For y � S let U�t� � y�t�2 � y ��t�2. Then

U��t� � 2 y�t�y ��t� � 2 y ��t�y ���t� � 2 y�t�y ��t� � 2 y ��t� ��by ��t� � c y�t��

� �2 � 2c�y�t�y ��t� � 2b y ��t�2,
and

|U��t�| � 2�1 � |c|� |y| |y � | � 2 |b| |y � |2.

Now we use the result that 2 |y| |y � | � |y|2 � |y � |2

which is a consequence of � |y| � |y � |�2
� |y|2 � 2 |y| |y � | � |y � |2 � 0.

Then
|U��t�| � �1 � |c|� |y|2 � |y � |2 � 2 |b| |y � |2

� 2�1 � |b| � |c|� |y|2 � |y � |2 � 2k U�t�,

which is the same as saying

�2k U�t� � U��t� � 2k U�t�.

This implies that (check this out),

U�0�e�2kt � U�t� � U�0�e2kt,
and
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U�0� e�kt � U�t� � U�0� ekt,

which is the estimate we were trying to prove.�

Lemma 4
For arbitrary constants, A, B there exists at most one y � S such that
y�0� � A and y ��0� � B.

Proof- Suppose there are two functions y1, y2 � S which both satisfy
y�0� � A and y ��0� � B. Then the function w�t� � y1�t� � y2�t� must satisfy

L�w�t�� � 0 �why?�
and w�0� � 0 and w��0� � 0, �why?�.

But then Lemma 3 implies C e�kt � w�t�2 � w��t�2 � C ekt for C � 0. Then
w�t� � w��t� � 0, and w�t� � y1�t� � y2�t� � 0 and it follows that y1�t� � y2�t�.�

Lemma 5
For arbitrary constants, A, B there exists at least one y � S such that
y�0� � A and y ��0� � B.

Proof- Recall that L�ert � � P�r�ert � 0 implies P�r� � 0, and this polynomial equation has
roots r1, r2. There are 3 possible cases, in each of which we can find independent solutions
y1, y2 for the homogeneous equation. That is,

if

r1 � r2 both real

r1 � r2

r1, r2 � a � i b

then

y1 � er1t, y2 � er2t

y1 � er1t, y2 � t er1t

y1 � eat cosbt, y2 � eat sin bt,

.

In all three cases, we have y�0� � C1y1�0� � C2y2�0� � A
and y ��0� � C1y1

� �0� � C2y2
� �0� � B

and the determinant of this set of two equations in two unknowns is just the Wronskian
W�y1, y2 �. Since y1, y2 � S are independent, this determinant is not zero and a unique
solution for C1, C2 exists for all choices of A,B.�

Combining the last two lemmas allows us to assert that

For arbitrary constants, A, B there exists one and only one solution for

L�y�t�� � 0 with y�0� � A and y ��0� � B.

Lemma 6
Let y1, y2 � S be linearly independent. Then every y � S can be written uniquely in the
form y�t� � C1y1�t� � C2y2�t�.

34



The assertion of this lemma is that there are at least two independent functions in S but any
set of three or more functions in S must be dependent. That is, S is a two dimensional
subspace of C2.

Proof- Let y1, y2 � S be linearly independent and, for an arbitrary y � S, let
y�0� � A, y ��0� � B. Then by lemma 5, there exists at least one choice of C1, C2 such that

Y�t� � C1y1�t� � C2y2�t� satisfies

L�Y�t�� � 0 with Y�0� � A and Y ��0� � B.

But by lemma 4, Y�t� � y�t��
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